

ORIGIN CLASSES RATH

Add- Ramlila Maidan Rath Hamirpur U.P Contact: 7081743008, 9838999126

For Class 9th-12th CBSE BOARD

Topic-Trigonometric Ratios(TR & Table)

Name-

Class-IX (Foundation)

MCQ's question

- 1. In $\triangle PQR$, right angled at Q if $\angle R = \theta$ then the value of $25(\sin^2\theta + 2\cos^2\theta - \tan\theta)$ is
 - (i) 2/3
- (ii) -2/3
- (iii) 3/2
- (iv) -3/2
- 2. In $\triangle ABC$, right angled at B if $\tan A = \sqrt{3}$, then $\cos A \cos C - \sin A \sin C =$
 - (i) -1
- (ii) 0
- (iii) 1
- (iv) $\frac{\sqrt{3}}{2}$
- 3. In given figure if PS=14 cm, then the value of tan a is equal to
 - 4/3
- 14/3
- (iii) 5/3
- (iv) 13/3

- 4. If $\sin x + \csc x = 2$ then $\sin^{19} x + \csc^{20} x =$
 - 2^{19} (i)
- 2^{20} (ii)
- (iii)
- 5. If $\cot \theta = \frac{1}{\sqrt{3}}$, then the value of $(\sec^2 \theta + \csc^2 \theta)$ is
- 40/9
- (iii)
- **6.** Given that , $\sec \theta = \sqrt{2}$, then the value of $\frac{1+\tan \theta}{\sec \theta}$ is
 - $2\sqrt{2}$ (ii)
- $\sqrt{2}$ (iii)
- $3\sqrt{2}$
- 7. If $4 \tan \theta = 3$, then $5 \left(\frac{\cos \theta}{4} \right)$ is
- (ii)
- (iv) 3
- **8.** Given that $\sin \theta = \frac{a}{b}$ then $\cos \theta$ is equal to

- **9.** In the given figure, D is the mid-point of BC, then the value of $\cot y^0/\cot x^0$ is
- (ii) 1 (iii) ½
- (iv) $\sqrt{3}/2$
- **10.** If $\sin \theta \cos \theta = 0$ then the value of $\sin^4 \theta + \cos^4 \theta$ is 3/4 (iii) 1/2 (iv) 1/4
- **11.** If $\sin \theta + \csc \theta = 2$ then the value of $sin^2\theta + cosec^2\theta$ is equal to

(i) 1/2

- (ii)
- (iii)
- (iv) 3/4
- **12.** If $4\tan \beta = 3$, then the value of $\frac{4\sin \beta 3\cos \beta}{4\sin \beta + 3\cos \beta}$ is
- (i)
- (ii)
- 1/3
- (iii)
- 2/3
- (iv) 3/4
- 13. If $\frac{\cos \theta \sin \theta}{\cos \theta + \sin \theta} = \frac{1 \sqrt{3}}{1 + \sqrt{3}}$ then the value of acute $\tan \theta$ is
 - $1/\sqrt{3}$ (ii) 1 (iii) $\sqrt{3}$
- (iv) NOT
- **14.** If $\sin \theta = \frac{5}{7}$ then what is the value of $\tan \theta$
 - (i) 5/2
- (ii) $5/\sqrt{6}$ (iii) $5/2\sqrt{6}$ (iv) NOT

- **15.** If $\tan \theta = \frac{a}{b}$ then $\frac{\sin \theta b \cos \theta}{\sin \theta + b \cos \theta}$ is

- **16.** If $7 \tan \theta = 4$ then $\frac{(7 \sin \theta 3 \cos \theta)}{(7 \sin \theta + 3 \cos \theta)}$
- (iii) 5/7 17. The value of $\sin \theta$ lies between-
 - (ii) $1 \le \sin \theta \le 2$ (i) $-1 \le \sin \theta \le 1$
 - (iii) any real no
- (iv) always greater than 1

3/7

- 5 cm 18. The maximum value of $\frac{1}{\cos \theta}$ is
 - (i)
- (iii) -1 to 1
- (iv) ∞ or not define
- **19.** The value of $\cot \theta$ is
 - (i) $-1 \le \cot \theta \le 1$ (ii) $1 \le \cot \theta \le 2$
 - (iii) any real no (iv) always greater than 1
- **20.** If $\triangle ABC$ is right angled at C, then the $\cos(A + B)$ is
 - 1 (iii) 1/2 (iv) $\sqrt{3}/2$ (ii)
- **21.** If α , β are acute, $\sin \alpha = \frac{\sqrt{3}}{2}$ and $\cos \beta = \frac{\sqrt{3}}{2}$ then $\alpha + \beta$
 - 30°

(i)

- (ii)
- 90° (iii)
- (iv) 120°

(iv) 5/14

- **22.** If $\sin \theta \cos \theta = 0$ then the value of $\sin^4 \theta + \cos^4 \theta$ is (iv) 1/4
- 23. The value of $\frac{2 \tan 60^{\circ}}{1 + \tan^2 60^{\circ}}$
- (i) 1/2 (ii) $\sqrt{3}/2$ (iii) $1/\sqrt{2}$ **24.** Given that $\csc \alpha = \frac{2}{\sqrt{3}}$ and $\tan \beta = \frac{1}{\sqrt{3}}$ then $cos(\alpha - \beta)$ is
- $1/\sqrt{2}$ $\sqrt{3}/2$ (iii) (ii) **25.** If sin(A + B) = cos(A - B) = 1, then
 - $A=B=0^{\circ}$
- $A=B=45^{\circ}$ (ii)
- (iii) $A=60^{\circ}$, $B=30^{\circ}$ (iv)
- $A=90^{\circ}$, $B=60^{\circ}$
- **26.** In $\triangle PQR$ right angle at Q, PQ = 3 cm and PR = 6 cm then $\angle QPR$ is
 - 30° (i)
- (ii)
- (iii) 45°
- (iv) 60°

Assertion and Reason

Direction: In the Following Questions, A Statement of Assertion (A) Is Followed by A Statement of Reason (R). Mark The Correct Choice As

27. Assertion(A): The value of each of the trigonometric ratio of an angle do not vary with the length of the sides of the triangle, if the angle remains the same.

Reason(R): In right angle triangle, if $\angle B = 90^{\circ}$ and

$$\angle A = \theta$$
, $\sin \theta = \frac{BC}{AC} < 1$ and $\cos \theta = \frac{AB}{AC} < 1$ as

hypotenuse is the longest side.

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- c)Assertion (A) is true but reason (R) is false.
- d)Assertion (A) is false but reason (R) is true
- **28.** Assertion(A) : In $\triangle PQR$ right angled at Q, PR PQ = 1cm and QR = 3 cm. The value of $sin^2R + cosec R$ is

Reason(R): $\sin^2 A = (\sin A)^2$ and $\csc A = (\sec A)^{-1}$

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- c)Assertion (A) is true but reason (R) is false.
- d)Assertion (A) is false but reason (R) is true
- **29.** The value of $\sin \theta$ or $\cos \theta$ never exceeds......
- **30.** In a triangle $\triangle PQR$, $\angle PQR = 90^{\circ}$. If $\tan R = \sqrt{3}$, then find the value of $\sin P \cdot \cos R - \sin R \cdot \cos P$.
- **31.** If $\cos \theta = \frac{3}{5}$, find value of $\left(\frac{5 \csc \theta 4 \tan \theta}{\sec \theta + \cot \theta}\right)$
- **32.** If $5 \cot \theta = 3$, find $\left(\frac{5 \sin \theta 3 \cos \theta}{4 \sin \theta + 3 \cos \theta}\right)$.
- **33.** In a \triangle ABC, it is given that $\angle C = 90^{\circ}$, and $\tan A =$ $\frac{1}{\sqrt{3}}$, find the value of $(\sin A \cos B + \cos A \sin B)$.
- **34.** If $\sec \theta = \frac{17}{8}$, show that $\frac{3-4\sin^2\theta}{4\cos^2\theta 3} = \frac{3-\tan^2\theta}{1-3\tan^2\theta}$
- **35.** If $\cot \theta = \frac{15}{8}$, evaluate $\frac{(2+2\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(2-2\cos\theta)}$
- **36.** If 3 cot A = 4, find the value of $\frac{\csc^2 A + 1}{\csc^2 A 1}$
- 37. If $4 \tan \theta = 3$, evaluate $\left(\frac{4 \sin \theta \cos \theta + 1}{4 \sin \theta + \cos \theta 1}\right)$
- **38.** If $\sin \theta = \frac{12}{13}$ then Evaluate $\frac{\sin^2 \theta \cos^2 \theta}{2 \sin \theta \cdot \cos \theta} \times \frac{1}{\tan^2 \theta}$
- **39.** In fig. AD=DB and $\angle B$ is a right angle
 - Determine (i) $\sin \theta$ (ii) $\cos \theta$ (iii) $\tan \theta$
- **40.** If θ is an acute angle and $\tan \theta + \cot \theta = 2$, then Find the value of $tan^7\theta + cot^7\theta$
- **41.** If $\sqrt{3}\sin\theta = \cos\theta$, then Evaluate $\frac{3\cos^2\theta + 2\cos\theta}{3\cos\theta + 2}$

- **42.** In triangle ABC if $\angle B$ is right angle and $\angle A = \theta$ then (i) $sin^2\theta + cos^2\theta = 1$ prove that (ii) $1 + tan^2\theta = sec^2\theta$
- **43.** If $\cos A = \frac{7}{25}$, then find the value of (i) $(\tan A + \cot A)$ (ii) $(\sin A + \cos A) \sec A$.
- **44.** In $\triangle PQR$, right angled at Q, PR+QR=25cm and PQ=5
- cm. Determine the value of $\sin P$, $\cos P$ and $\tan P$
- **45.** If $\cot B = \frac{12}{5}$, then prove that $tan^2B - sin^2B = sin^4B.sec^2B$
- **46.** In triangle ABC if $\angle B$ is right angle, BC = 7 cm and AC - AB = 1 cm. Find the value of $\cos A + \sin A$.
- **47.** If $\tan A = \sqrt{2} 1$ then show that $\sin A \cdot \cos A = \frac{\sqrt{2}}{4}$.
- **48.** If $21 \csc \theta = 29$ then Evaluate $\frac{\cos^2 \theta \sin^2 \theta}{1 2\sin^2 \theta}$
- **49.** If $\sec \alpha = \frac{5}{4}$, Evaluate $\frac{1-\tan \alpha}{1+\tan \alpha}$
- **50.** If $\sin \emptyset = \cos \emptyset$, then find \emptyset
- **51.** Simplify $\sin 60^{\circ}$. $\cos 30^{\circ} + \cos 60^{\circ}$. $\sin 30^{\circ}$
- **52.** Evaluate $\frac{5\cos^2 60^\circ + 4\sin^2 30^\circ \tan^2 45^\circ}{\sin 30^\circ + \cos 60^\circ}.$
- **53.** If $tan(A+B) = \sqrt{3}$ and $tan(A-B) = \frac{1}{\sqrt{3}}$, then find the value of A and B.
- **54.** Prove that (i) $(\sqrt{3} + 1)(3 \cot 30^\circ) = \tan^3 60^\circ \cot 30^\circ$
- **55.** Evaluate $4(\sin^4 45^\circ + \cos^4 45^\circ)^2 2(\tan^2 30^\circ + \cos^4 45^\circ)^2 = 2(\tan^2 30^\circ + \cos^2 30^\circ + \cos^2 30^\circ)^2 = 2(\tan^2 30^\circ)^2$ cot230°+cosec245°.
- **56.** If $\cot 3\varphi = 1/\sqrt{3}$ then find the value of φ
- **57.** If $\sqrt{3} \sin 2\theta = 3/2$ then find the value of θ
- **58.** If tan(3x-15) = 1 then find the value of x.
- **59.** Prove that $(\sqrt{3} + 1)(3 \cot 30^\circ) = \tan^3 60^\circ \cot 30^\circ$ 2 tan 60°.
- **60.** If $2\cos\left(\frac{A}{2}\right) = \sqrt{3}$, then the value $\tan A$
- **61.** Evaluate: $4(\sin^4 45^\circ + \cos^4 45^\circ)^2 2(\tan^2 30^\circ +$ cot230°+cosec245°.
- **62.** In $\triangle PQR$, right angled at Q, PR+QR=25cm and PQ=5 cm. Determine the value of $\sin P$, $\cos P$ and $\tan P$.
- **63.** If $\sqrt{3} \sec(3x 21^\circ) = 2$, then find the value of $sin^{2}(x+13)^{\circ} + cot^{2}(x+13)^{\circ}$.
- 64. An equilateral triangle is inscribed in a circle of diameter 24 cm. Find its side.
- **65.** If $4\cos^2 A 3 = 0$, show that $\cos 3A = 4\cos^3 A 3\cos A$.