MCQ's question

1. In $\triangle P Q R$, right angled at Q if $\angle R=\theta$ then the value of $25\left(\sin ^{2} \theta+2 \cos ^{2} \theta-\tan \theta\right)$ is
(i) $2 / 3$
(ii) $-2 / 3$
(iii) $3 / 2$
(iv) $-3 / 2$
2. If $\tan \theta=\frac{a}{b}$ then $\frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}$ is
(i) $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
(ii) $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
(iii) $\frac{a^{2}}{a^{2}+b^{2}}$
(iv) $\frac{b^{2}}{a^{2}+b^{2}}$
3. If $7 \tan \theta=4$ then $\frac{(7 \sin \theta-3 \cos \theta)}{(7 \sin \theta+3 \cos \theta)}$
(i) $1 / 7$
(ii)
5/7
(iii) $3 / 7$
(iv) $5 / 14$
4. In given figure if $\mathrm{PS}=14 \mathrm{~cm}$, then the value of \tan a is equal to
(i) $4 / 3$
(ii)
14/3
(iii) $5 / 3$
(iv) $13 / 3$

5. If $\sin x+\operatorname{cosec} x=2$ then $\sin ^{19} x+\operatorname{cosec}^{20} x=$
(i) 2^{19}
(ii)
2^{20}
(iii) 2
(iv) 2^{39}
6. If $\cot \theta=\frac{1}{\sqrt{3}}$, then the value of $\left(\sec ^{2} \theta+\operatorname{cosec}^{2} \theta\right)$ is
(i)
(ii) $40 / 9$
(iii) $38 / 9$
(iv) $5 \frac{1}{3}$
7. Given that, $\sec \theta=\sqrt{2}$, then the value of $\frac{1+\tan \theta}{\sec \theta}$ is
(i) $2 \sqrt{2}$
(ii) $\sqrt{2}$
(iii)
$3 \sqrt{2}$
(iv) 2
8. If $4 \tan \theta=3$, then $5\left(\frac{\cos \theta}{4}\right)$ is
(i)
(ii)
3/4
(iii)
5/4
(iv) 3
9. Given that $\sin \theta=\frac{a}{b}$ then $\cos \theta$ is equal to
(i) $\frac{b}{\sqrt{b^{2}-a^{2}}}$
(ii) $\frac{\sqrt{b^{2}-a^{2}}}{b}$
(iii) $\frac{b}{a}$

10. In the given figure, D is the mid-point of $B C$, then the value of $\cot y^{0} / \cot x^{0}$ is
11. The value of $\sin \theta$ lies between-
(i) $-1 \leq \sin \theta \leq 1$
(ii) $1 \leq \sin \theta \leq 2$
(iii) any real no
(iv) always greater than 1
12. The maximum value of $\frac{1}{\cos \theta}$ is
(i) 1
(ii)
-1
(iii) -1 to 1
(iv) ∞ or not define
13. The value of $\cot \theta$ is
(i) $-1 \leq \cot \theta \leq 1$
(ii) $1 \leq \cot \theta \leq 2$
(iii) any real no
(iv) always greater than 1
14. If $\triangle A B C$ is right angled at C, then the $\cos (A+B)$ is
(i) 0
(ii)
1 (iii) $1 / 2$
(iv) $\sqrt{3} / 2$
15. If α, β are acute, $\sin \alpha=\frac{\sqrt{3}}{2}$ and $\cos \beta=\frac{\sqrt{3}}{2}$ then $\alpha+\beta$ is
(i) 30°
(ii)
60°
(iii) 90°
(iv) 120°
16. If $\sin \theta-\cos \theta=0$ then the value of $\sin ^{4} \theta+\cos ^{4} \theta$ is
(i) 1
(ii) $3 / 4$
(iii) $1 / 2$
(iv) $1 / 4$
17. The value of $\frac{2 \tan 60^{\circ}}{1+\tan ^{2} 60^{\circ}}$
(i) $1 / 2$
(ii)
$\sqrt{3} / 2$
(iii) $1 / \sqrt{2}$
(iv) $\sqrt{3}$
18. Given that $\operatorname{cosec} \alpha=\frac{2}{\sqrt{3}}$ and $\tan \beta=\frac{1}{\sqrt{3}}$ then
(i) $1 / 2$
(ii)
$\sqrt{3} / 2$
(iii) $1 / \sqrt{2}$
(iv) 0
19. If $\sin (A+B)=\cos (A-B)=1$, then
(i) $\mathrm{A}=\mathrm{B}=0^{\circ}$
(ii) $\mathrm{A}=\mathrm{B}=45^{\circ}$
(iii) $\mathrm{A}=60^{\circ}, \mathrm{B}=30^{\circ}$
(iv) $\mathrm{A}=90^{\circ}, \mathrm{B}=60^{\circ}$
20. In $\triangle P Q R$ right angle at $Q, P Q=3 \mathrm{~cm}$ and $P R=6 \mathrm{~cm}$ then $\angle Q P R$ is
(i) 30°
(ii)
0°
(iii) 45°
(iv) 60°

Assertion and Reason

Direction: In the Following Questions, A Statement of Assertion (A) Is Followed by A Statement of Reason (R). Mark The Correct Choice As
27. Assertion(A) :The value of each of the trigonometric ratio of an angle do not vary with the length of the sides of the triangle, if the angle remains the same.
42. In triangle ABC if $\angle B$ is right angle and $\angle A=\theta$ then

Reason(R): In right angle triangle, if $\angle B=90^{\circ}$ and $\angle A=\theta, \sin \theta=\frac{B C}{A C}<1$ and $\cos \theta=\frac{A B}{A C}<1$ as hypotenuse is the longest side.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
b) Both assertion (A) and reason (R) are true but reason
(R) is not the correct explanation of assertion (A).
c)Assertion (A) is true but reason (R) is false.
d) Assertion (A) is false but reason (R) is true
28. Assertion(A) :In $\triangle P Q R$ right angled at $\mathrm{Q}, P R-P Q=1$ cm and $Q R=3 \mathrm{~cm}$. The value of $\sin ^{2} R+\operatorname{cosec} R$ is $\frac{189}{100}$
Reason(R): $\sin ^{2} A=(\sin A)^{2}$ and $\operatorname{cosec} A=(\sec A)^{-1}$
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
c)Assertion (A) is true but reason (R) is false.
d)Assertion (A) is false but reason (R) is true
29. The value of $\sin \theta$ or $\cos \theta$ never exceeds.
30. In a triangle $\triangle \mathrm{PQR}, \angle P Q R=90^{\circ}$. If $\tan R=\sqrt{3}$, then find the value of $\sin P \cdot \cos R-\sin R \cdot \cos P$.
31. If $\cos \theta=\frac{3}{5}$, find value of $\left(\frac{5 \operatorname{cosec} \theta-4 \tan \theta}{\sec \theta+\cot \theta}\right)$
32. If $5 \cot \theta=3$, find $\left(\frac{5 \sin \theta-3 \cos \theta}{4 \sin \theta+3 \cos \theta}\right)$.
33. In a $\triangle \mathrm{ABC}$, it is given that $\angle C=90^{\circ}$, and $\tan A=$ $\frac{1}{\sqrt{3}}$, find the value of $(\sin A \cos B+\cos A \sin B)$.
34. If $\sec \theta=\frac{17}{8}$, show that $\frac{3-4 \sin ^{2} \theta}{4 \cos ^{2} \theta-3}=\frac{3-\tan ^{2} \theta}{1-3 \tan ^{2} \theta}$.
35. If $\cot \theta=\frac{15}{8}$, evaluate $\frac{(2+2 \sin \theta)(1-\sin \theta)}{(1+\cos \theta)(2-2 \cos \theta)}$
36. If $3 \cot \mathrm{~A}=4$, find the value of $\frac{\operatorname{cosec}^{2} A+1}{\operatorname{cosec}^{2} A-1}$
37. If $4 \tan \theta=3$, evaluate $\left(\frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}\right)$
38. If $\sin \theta=\frac{12}{13}$ then Evaluate $\frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cdot \cos \theta} \times \frac{1}{\tan ^{2} \theta}$.
39. In fig. $\mathrm{AD}=\mathrm{DB}$ and $\angle B$ is a right angle
Determine
(i) $\sin \theta$
(ii) $\cos \theta$
(iii) $\tan \theta$
40. If θ is an acute angle and $\tan \theta+\cot \theta=2$, then Find the value of $\tan ^{7} \theta+\cot ^{7} \theta$
41. If $\sqrt{3} \sin \theta=\cos \theta$, then Evaluate $\frac{3 \cos ^{2} \theta+2 \cos \theta}{3 \cos \theta+2}$.
prove that (i) $\sin ^{2} \theta+\cos ^{2} \theta=1$
(ii) $1+\tan ^{2} \theta=\sec ^{2} \theta$
43. If $\cos A=\frac{7}{25}$, then find the value of
(i) $(\tan A+\cot A)$
(ii) $(\sin A+\cos A) \sec A$.
44. In $\triangle P Q R$, right angled at $\mathrm{Q}, \mathrm{PR}+\mathrm{QR}=25 \mathrm{~cm}$ and $\mathrm{PQ}=5$ cm . Determine the value of $\sin P, \cos P$ and $\tan P$
45. If $\cot B=\frac{12}{5}$, then prove that $\tan ^{2} B-\sin ^{2} B=\sin ^{4} B \cdot \sec ^{2} B$
46. In triangle ABC if $\angle B$ is right angle, $\mathrm{BC}=7 \mathrm{~cm}$ and $A C-A B=1 \mathrm{~cm}$. Find the value of $\cos A+\sin A$.
47. If $\tan A=\sqrt{2}-1$ then show that $\sin A \cdot \cos A=\frac{\sqrt{2}}{4}$.
48. If $21 \operatorname{cosec} \theta=29$ then Evaluate $\frac{\cos ^{2} \theta-\sin ^{2} \theta}{1-2 \sin ^{2} \theta}$.
49. If $\sec \alpha=\frac{5}{4}$, Evaluate $\frac{1-\tan \alpha}{1+\tan \alpha}$
50. If $\sin \emptyset=\cos \emptyset$, then find \emptyset
51. Simplify $\sin 60^{\circ} \cdot \cos 30^{\circ}+\cos 60^{\circ} \cdot \sin 30^{\circ}$
52. Evaluate $\frac{5 \cos ^{2} 60^{\circ}+4 \sin ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin 30^{\circ}+\cos 60^{\circ}}$.
53. If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}}$, then find the value of A and B .
54. Prove that $(\mathrm{i})(\sqrt{3}+1)\left(3-\cot 30^{\circ}\right)=\tan ^{3} 60^{\circ}-$ $2 \tan 60^{\circ}$.
55. Evaluate $4\left(\sin ^{4} 45^{\circ}+\cos ^{4} 45^{\circ}\right)^{2}-2\left(\tan ^{2} 30^{\circ}+\right.$ $\cot 230^{\circ}+\operatorname{cosec} 245^{\circ}$.
56. If $\cot 3 \varphi=1 / \sqrt{3}$ then find the value of φ
57. If $\sqrt{3} \sin 2 \theta=3 / 2$ then find the value of θ
58. If $\tan (3 x-15)=1$ then find the value of x.
59. Prove that $(\sqrt{3}+1)\left(3-\cot 30^{\circ}\right)=\tan ^{3} 60^{\circ}-$ $2 \tan 60^{\circ}$.
60. If $2 \cos \left(\frac{A}{2}\right)=\sqrt{3}$, then the value $\tan A$
61. Evaluate : $4\left(\sin ^{4} 45^{\circ}+\cos ^{4} 45^{\circ}\right)^{2}-2\left(\tan ^{2} 30^{\circ}+\right.$ $\cot 230^{\circ}+\operatorname{cosec} 245^{\circ}$.
62. In $\triangle P Q R$, right angled at $\mathrm{Q}, \mathrm{PR}+\mathrm{QR}=25 \mathrm{~cm}$ and $\mathrm{PQ}=5$ cm . Determine the value of $\sin P, \cos P$ and $\tan P$.
63. If $\sqrt{3} \sec \left(3 x-21^{\circ}\right)=2$, then find the value of $\sin ^{2}(x+13)^{\circ}+\cot ^{2}(x+13)^{\circ}$.
64. An equilateral triangle is inscribed in a circle of diameter 24 cm . Find its side.
65. If $4 \cos ^{2} A-3=0$, show that $\cos 3 A=4 \cos ^{3} A-$ $3 \cos A$.

